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A possible basis for a quantitative theory of metabolic regulation is outlined. Regulation is 
defined here as the alteration of reaction properties to augment or counteract the mass-action 
trend in a network reactions. In living systems the enzymes that catalyze these reactions are the 
"handles" through which such alteration is effected. It is shown how the elasticity coefficients of 
an enzyme-catalyzed reaction with respect to substrates and products are the sum of a mass- 
action term and a regulatory kinetic term; these coefficients therefore distinguish between mass- 
action effects and regulatory effects and are recognized as the key to quantifying regulation. As 
elasticity coefficients are also basic ingredients of metabolic control analysis, it is possible to 
relate regulation to such concepts as control, signalling, stability, and homeostasis. The need 
for care in the choice of relative or absolute changes when considering questions of metabolic 
regulation is stressed. Although the concepts are illustrated in terms of a simple coupled 
reaction system, they apply equally to more complex systems. When such systems are divided 
into reaction blocks, co-response coefficients can be used to measure the elasticities of 
these blocks. 

KEY WORDS: Metabolic regulation; metabolic control analysis; signals; homeostasis; co-response 
analysis. 

I N T R O D U C T I O N  

This is a review of some established concepts of 
metabolic regulation. It is also a fresh view in the 
sense that these concepts are examined through the 
spectacles of  metabolic control analysis, the quantita- 
tive framework for describing metabolic behavior orig- 
inated by Kacser and Bums (1973) and Heinrich and 
Rapoport (1974), and refined by numerous other work- 
ers [see Fell (1992) and Comish-Bowden (1995) for 
recent reviews]. I make no attempt to review the exten- 
sive literature of either of the two fields. The reference 
list is highly selective and reflects those publications 
that were most influential in laying the foundation for 
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understanding of metabolic behavior. 
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my own understanding of  metabolic regulation. The 
main inspiration for the definition of metabolic regula- 
tion formulated here came from the work of  Reich and 
Sel 'kov (1981); to a large extent, this review is a 
summary of  their thinking. The other major source of 
inspiration was Atkinson (1977), a landmark in the 
development of  our understanding of  metabolic 
regulation. 

I shall first argue for a broad definition of  meta- 
bolic regulation as a set of strategies to either augment 
or counteract the intrinsic mass-action trend in open 
reaction networks. Then I illustrate how the elasticity 
coefficient (which biochemists will recognize as the 
familiar kinetic order of  a reaction) is the sum of  mass- 
action and regulatory effects of  enzymes and signals. 
Elasticity is also the basic ingredient of  metabolic con- 
trol analysis and thus forms the link between the con- 
cepts of  control, regulation, and stability. The last 
section shows how the overall elasticities of  reaction 
blocks can be measured in terms of  co-response coeffi- 
cients, thus allowing the type of analysis described 
here to be extended to systems of  arbitrary complexity. 
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METABOLIC REGULATION: 
AUGMENTING OR COUNTERACTING 
MASS-ACTION 

A metabolic system is an open reaction network 
of enzyme-catalyzed reactions linked by common 
intermediates; the network spreads across membrane- 
bounded compartments so that transport systems are 
included. The idea that in living systems such networks 
are "regulated" has become so entrenched that it is 
surprising that a general and useful definition of regula- 
tion is so hard to come by. Usually, the question "What 
do you mean by regulation?" is answered in terms of 
some "regulatory mechanism(s)" central to the respon- 
dent's sphere of interest, be it allosteric end-product 
inhibition, covalent modification cycles, induction and 
repression of enzyme synthesis, etc. It seems that the 
majority of biochemists and molecular biologists see 
regulation as a collection of phenomena, but exactly 
what criterion binds these phenomena into a distinct 
class is not clear. Nevertheless, if such a criterion exists 
it must be rather broad to accommodate mechanisti- 
cally disparate phenomena. 

What we study as metabolic systems are reaction 
networks of which the intrinsic properties have been 
altered and moulded by evolution to fulfill specific 
functions essential to the processes of life. As so elo- 
quently argued by Atkinson (I 977), our understanding 
of metabolic systems must be, as is an engineer's 
understanding of technological systems, in terms of a 
product designed by evolution, the "Blind Watch- 
maker" (Dawkins, 1986). As a corollary to this, when 
our understanding is deep enough, we should be able 
to function as effective "metabolic designers," even if 
only in theory and not in practice (although with mod- 
em recombinant DNA techniques of molecular biology 
we may already have an adequate metabolic designer's 
toolbox). Nevertheless, even without evolution's tin- 
kering (Jacob, 1983), all open nonequilibrium reaction 
networks spontaneously organize themselves into 
some state such as the steady state (Nicolis and Prigog- 
ine, 1977; Kauffman, 1993). This is one of Reich and 
Sel'kov's (1981) main messages when they argue that 
much of metabolic behavior is "a spontaneous coordi- 
nation and expediency of motion like that of droplets 
in a stream," instead of the sole result of "collections 
of interactive regulatory feedback systems" without 
which all will be chaos. This is not to deny the impor- 
tance of these regulatory mechanisms for tuning or for 
creating novel responses, but to stress the importance 

of the evolved stoichiometry (Atkinson, 1977) of the 
metabolic network. 

To understand metabolism as a designed system, 
we must study the properties of the raw materials 
and processes, and how these properties have been 
moulded via enzymes to fulfill a specific function. The 
intrinsic processes are of course the stoichiometric 
chemical reactions found on the metabolic map. Why 
these specific reactions have been selected for life 
processes is a complicated question and one that will 
not be addressed here. It has, however, been the subject 
of a series of recent studies (Melendez-Hevia et al., 
1994). I shall regard the revealed metabolic structure 
as a given. 

Taking open uncatalyzed reaction networks as a 
starting point we see that mass-action is the main driv- 
ing force for self-organization. This is not to say that 
the behavior of these systems is necessarily simple; 
for instance, nonenzymic networks can contain auto- 
catalytic cycles that cause oscillations or deterministic 
chaos, multiple steady states, trigger behavior. How- 
ever, by identifying mass-action as the basic driving 
force, we can broadly define metabolic regulation as 
the alteration of  reaction properties to augment or 
counteract the mass-action trend in a network of  reac- 
tions. On the basis of our current knowledge, living 
systems have achieved this on two levels: first, by 
evolving (i) enzymes with high catalytic and binding 
specificity, (ii) mechanisms for altering enzyme activ- 
ity, concentration and binding properties, and (iii) allo- 
steric and other signals; second, by evolving special 
stoichiometric network structures such as moiety-con- 
served and autocatalytic cycles. Without the evolution 
of enzymes this moulding process would have been 
impossible: on the one hand, enzymes lift the metabolic 
network from the underlying network of thermody- 
namically feasible reactions onto a different timescale; 
on the other, enzymes add controllability and regulabil- 
ity to metabolism--without enzymes evolution would 
have had no "handles" to work with. This review 
focuses on enzymes and signals; for a discussion of 
stoichiometric aspects of regulation see Reich and Sel'- 
kov (1981) and Atkinson (1977). 

The prototype system that will be used as a basis 
for further discussion is extremely simple, but never- 
theless important as the simplest example of one of the 
two ways in which reactions are coupled in metabolic 
systems (Fig. 1). The moiety-conserved cycle (Fig. 
1B), being the principle component in Reich and Sel'- 
kov's (1981) treatment, has been amply discussed; I 
shall consider the chain (Fig. 1A). 
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ELASTICITY IS THE SUM OF MASS- 
ACTION AND REGULATION 

In Fig. IA substrate S is converted to a product 
P by two reactions that are coupled by a common 
intermediate X. Both reactions are in principle revers- 
ible; the equilibrium constant K~2 of the sequence is 
the product of the two individual equilibrium constants 
Klz = KIK2. If external influences keep S and P in a 
nonequilibrium ratio, the system is open and attains a 
steady state in which the concentration x of X does 
not change with time (it attains a steady-state value 2) 
and in which there is a constant flux of matter J through 
the system; the value of the flux is equal to the rates 
through the individual reactions, J = v~ = vz, and the 
direction of flux is from S to P when Flz/Klz < 1, 
where F~z is the mass-action ratio p/s, where p and s 
are the concentrations of P and S. 

The dependence of each reaction rate on the con- 
centration x can be visualized as a rate characteristic 
(Chance, 1961; Higgins, 1967; Reich and Sel'kov, 
1981). A graph containing the rate characteristics of 
both reactions is an informative way of visualizing the 
steady state and the behavior of the system around the 
steady state. The solid lines in Fig. 2A are the rate 
characteristics of the two reactions in Fig. IA when 
catalyzed by enzymes obeying simple Michaelis- 
Menten kinetics (kinetic details are given in the leg- 
end). The steady state is the point at which the rate 
curves intersect. A number of features are immediately 
apparent. For this constellation of parameters (s, p, 
kinetic constants) there is only one possible steady 
state (unique steady state); this steady state is stable, 
both dynamically (stable to perturbations in 2) and 
structurally (stable to perturbations in any of the 
parameters). That the system is dynamically stable is 
easy to see. I fx  is increased from its steady-state value, 
its rate of consumption (Vz) is greater that its rate of 
synthesis (v~) so that x is driven back to the original 
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Fig. 1. The two ways in which reactions are coupled. (A) Reaction 
2 takes the linking metabolite, X, on to form E a new substance. 
(B) Reaction 2 reverses the action of  reaction 1 as far as the linking 
metabolite is concerned. Whereas in (A) the concentration of  X is 
in principle free to assume any value, the sum of  X and Y concentra- 
tions in (B) is constant (a moiety-conserved cycle, e.g., the NAD+/ 
NADH cycle). 
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Fig. 2. Rate characteristics of  the reactions in Fig. I A with respect 
to the linking metabolite X. (A) Unscaled rate characteristics; (B) 
log-log form of  the rate characteristics. The point o f  intersection 
is the steady state (3', ~). The solid lines were calculated from the 
rate equations vl = VillKl.(s -- x /KOl( l  + s l K .  + xlKix) and v2 
= Vzxl(Kz~ + x). Parameter settings: s = 1, Vif = 20, Ki = 10, 
KI. = 1, Kjx = 1, Vz = 10, K2~ = 1. The dotted lines were calculated 
from simple mass-action rate equations: vt = k~(s - x lKt)  and v2 
= k2x. Parameter settings: s = 1, k~ = 6.23, Kt = 10, k2 = 4.524. 
As discussed later in the text, the differences between the solid and 
the dotted curves express how the saturation terms in the kinetic 
equations of the catalyzed system allow a greater range of  regulatory 
behavior than would be possible in an uncatalyzed system. 

steady state. If x is decreased, v~ > v2 and again the 
steady state is re-established. One can even get an idea 
of the magnitude of dynamic stability from the value 
of O(v~ - v2)lOx, the difference between the slopes at 
the steady state; the more negative, the faster the sys- 
tem returns to the steady state and the more stable it 
is. Structural stability means that the new steady state 
that is approached after perturbation in any of the 
parameters is very close to the original one [see Reich 
and Sel'kov (1981) and Westerhoff and van Dam 
(1987) for discussions of stability: the first from a 
classical dynamical systems point of view, the second 
from a nonequilibrium thermodynamic point of view 
that incorporates metabolic control analysis]. 

The response of the system to perturbations of 
any kind must depend on both the intrinsic mass-action 
trend and the kinetic properties of the enzymes; our 
purpose is to distinguish between the two. First we 
must find a quantitative measure of mass-action trend. 
For the general catalyzed reaction S ~- X any physi- 
cally realizable rate equation must be the product of 
a rate constant k, a saturation term O, and a thermody- 
namic term (Reich and Sel'kov, 1981): 

v = k . O ,  s -  (1) 

The saturation term O is a function of kinetic 
constants and the concentrations of substrates (s), prod- 
ucts (x), effectors, and enzyme. For a simple uncata- 
lyzed reaction, O would of course be 1. The following 
rate equation for a reversible Michaelis-Menten catal- 
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ysis of S ~ X illustrates typical expressions for k 
and O: 

v = - ~ ' . l  + s/Ks + x/Kx s -  (2) 

where Vf is the limiting forward rate, and Ks and K~ 
the Michaelis constants for substrate and product. 

The kinetic order of a reaction with respect to 
one of its substrates, products, or effectors is defined 
as 0In v/Oln c, where c is the appropriate concentration. 
This reaction property distinguishes between the con- 
tribution of mass-action and the contribution of kinetic 
properties in an additive, rather than multiplicative, 
way. In metabolic control analysis, this measure is 
symbolized by e~ and called the elasticity coefficient, 
or just elasticity (Kacser and Burns, 1973). A simple 
way of obtaining analytical expressions for elasticity 
coefficients is given in the Appendix. If this procedure 
is applied to Eq. (2) the following elasticity expressions 
are obtained: 

O In v - s /K ,  1 
~ v  _ _ _  _ + ( 3 )  

0 In s 1 + slK, + xlKx 1 - ['/Keq 

0 In v -x/Kx F/Keq 
e~ - - -  - (4) 

0 In x 1 + s/K, + xlKx 1 - F/Keq 

where F = x/s, the mass-action ratio under the prevail- 
ing conditions. The second right-hand terms are ther- 
modynamic as they depend only on F/Keq [remember 
that AG = RT In (F/Keq)]; they quantify the mass- 
action contribution to the sensitivity of reaction rate 
towards changes in a substrate or product. The denomi- 
nator (1 - FIKeq) gives the direction of the reaction 
and its distance from equilibrium: > 0, net reaction 
forward; < 0, net reaction backward; = 0, equilibrium; 
= 1, unidirectional. The first right-hand terms are 
kinetic in that they depend on reaction mechanism; 
they augment or counteract the mass-action term and 
are therefore the key to quantifying regulation. If the 
reaction were uncatalyzed its rate would be governed 
by mass-action only and the reaction would be unregu- 
lated; the kinetic terms would vanish, leaving only 
the thermodynamic terms in the elasticity expressions. 
Note that this applies to a single reaction; uncatalyzed, 
purely mass-action driven reaction networks can be 
regulated by stoichiometric structures such as moiety- 
conserved and autocatalytic cycles. 

For this particular rate equation, the first terms 
are clearly saturation terms that vary between 0 and 
1. Near equilibrium the second mass-action terms 

approach +oo and -oo respectively and dominate the 
elasticity. Far from equilibrium the mass-action terms 
approach 1 and 0 respectively so that the degree of 
saturation has a significant effect on the elasticity; the 
further from equilibrium, the greater the potential for  
regulation. The elasticity coefficients can be visualized 
as the slopes of the tangents to the rate-curves at the 
steady-state point when the rate characteristics are plot- 
ted in log-log space (solid curves in Fig. 2B). The 
slopes of the dotted curves quantify the mass-action 
contributions to the elasticities at the steady state; the 
regulatory terms account for the differences between 
the slopes of the solid and dotted curves. 

In the system analyzed in Fig. 2 the only variable 
concentration is x, and it must be the elasticities of vt 
and v2 with respect to x at the steady state that deter- 
mine the response of the system to perturbations at 
fixed s and p. It is clear that enzyme binding of product 
augments the product mass-action effect in reaction 1 
(making e~' more negative), and therefore increases 
the sensitivity of vl to changes in x. Binding of sub- 
strate, on the other hand, counteracts the substrate 
mass-action effect in reaction 2 (making ~ less posi- 
tive), and therefore desensitizes v2 to changes in x. In 
a sense, the desensitization to substrate and sensitiza- 
tion to product is a price that is paid when an enzyme 
is added to a reaction; nevertheless, the magnitude of 
both effects, even their sign, can be changed, as we 
shall see in later sections. 

SUBSTRATE AND PRODUCT BINDING CAN 
BE REGULATORY 

We have seen that the potential for regulation by 
substrates and products becomes greater the further 
the reaction is from equilibrium. Although all reactions 
are in principle reversible, some are unidirectional 
under virtually all conditions (when Keq is extremely 
large so that even when F >> 1, F/Keq still approaches 
zero; this is called an irreversible reaction) or only 
under certain conditions (when F '~ Keq). Although 
enzymes cannot alter the position of equilibrium, their 
catalytic and binding properties can be altered within 
the constraints of the Haldane relationship, which for 
the reversible Michaelis-Menten catalysis of S ~ X is 

_ k~ Kx (5) 
geq kr Ks 

where ky and kr are the forward and reverse turnover 
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numbers, and Ks and Kx the Michaelis constants for 
substrate and product. 

One example serves to show how changes in 
enzyme properties affect the regulatory roles of sub- 
strates or products. Figure 3 depicts the effects of 
changes in Kx of the enzyme catalyzing reaction 1 
in Fig. 1A. Enzyme 1 is functioning at a substrate 
concentration equal to Ks. The reference curve a is 
calculated for Ks = Kx, i.e., equal binding affinities 
for substrate and product; this situation is compared 
to one in which both kr and K~ are increased by a factor 
of 10 (curve b) and one in which they are decreased by 
a factor of 10 (curve c). As K~ is increased (curve b), the 
regulatory saturation term in the elasticity coefficient 
becomes smaller at all values ofx  so that the elasticity 
is determined mostly by mass-action (curve d shows 
the theoretical limit where K~ = oo so that only mass- 
action effects obtain). When K~ is decreased (curve c), 
the regulatory term dominates at low values ofx where 
mass-action is negligible (see the log-log plot in Fig. 
3B where around x = 1 the slope approaches - 1 ,  
the value of the regulatory term at a high degree of 
saturation by X); only at higher x does mass-action 
begin to take over the response. 

The effect of such changes on the steady state 
depend on the properties of the enzyme that catalyzes 
the reaction that consumes X. We examine the situation 
where enzyme 2 is a Michaelis-Menten enzyme (curve 
e). It is clear that a decrease in both kr and Kx results 
in a lower J and .e, while an increase in both kr and 
Kx has the opposite effect. 

This rather limited analysis does indicate that, 
although the regulatory properties of substrates and 
products can be altered by changes in binding affinities, 
other more sophisticated strategies are needed to enrich 
metabolic behavior. However, before discussing some 
of these, we need to clarify the question of control 
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Fig. 3. Rate characteristics of the reactions in Fig. IA with respect 
to the linking metabolite X. (A) Unscaled rate characteristics; (B) 
log-log form of  the rate characteristics. The rate equation and 
parameters for vl (curves a, b, c) are the same as that in Fig. 2, 
except for (a) Vtr = 2, Kt~ = 1; (b) Vtr = 20, KI., = 10; (c) Vtr 
= 0.2, Ktx = 0.1; (d) vt = 10.(1 - MI0). The rate equation for 
v 2 (curve e) is v2 = 10x/(l + x). 

and controllability, concepts that we regard as distinct 
from regulation and regulability. 

ENZYMES ADD CONTROLLABILITY TO A 
REACTION NETWORK 

Steady-state control, as used in metabolic control 
analysis, is a concept that can in principle be applied to 
any reaction network, catalyzed or uncatalyzed. What 
control is can perhaps be most easily understood as 
follows: Consider a reaction network in a steady state 
determined by a set of parameters, one of which specif- 
ically and directly affects the rate of reaction i. What 
happens when this parameter Pj is perturbed? The 
immediate effect is a change in the local reaction rate 
vi to a degree given by the elasticity coefficient ~ .  
This local rate change is then propagated through the 
system and eventually leads to a new steady state. The 
overall response to the change in Pj is therefore a 
combination of a local response and a systemic 
response. For any steady-state variable 37 (flux or con- 
centration) we could write 

0 In y _ 0 In y 0 In V i (6) 
OlnPj  01nvi OlnPj 

Each of these partial derivatives has a distinct opera- 
tional meaning and is given its own symbol: 

= ( 7 )  

where R~,, is a response coefficient quantifying the 
overall e~ect of a change in Pj on 37, and CY~ is a 
control coefficient quantifying the effect of a change in 
vi on y. This equation embodies the combined response 
property (Kacser and Burns, 1973) and is one of the 
pillars on which metabolic control analysis is built. 

From Eq. (6) it is clear that a control coefficient 
is defined in a parameter-independent way (Kacser 
and Burns, 1973; Heinrich et al., 1977; Schuster and 
Heinrich, 1992). In other words, any reaction step 
has control coefficients, whether there is a specific 
parameter that can be tweaked or not. However, the 
measurement or modification of control coefficients is 
difficult, if not impossible, if reactions are not equipped 
with enzyme "control knobs" that can be adjusted 
experimentally or by evolution. It is in this sense that 
individual reactions in enzyme-catalyzed networks are 
controllable, while those in uncatalyzed networks are 
not. The enzyme "control knob" can be turned in a 
number of ways: altering enzyme concentration, add- 
ing specific inhibitors or activators, altering binding 
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affinities, to mention a few. As the elasticity of a 
reaction to its own enzyme is usually 1 (enzyme con- 
centration being a multiplier in the rate equation), any 
response coefficient with respect to enzyme concentra- 
tion is numerically equal to the corresponding control 
coefficient of that step, i.e., R~i = O~ i [this is the basis 
of the widely-used definition of a control coefficient 
in terms of enzyme concentration instead of local rate 
(Bums et aL, 1985)]. 

From the above, there is still no logical necessity 
that any step should have nonzero control coefficients. 
That this must be so for at least some of the steps 
follows from the other theorems of metabolic control 
analysis, the so-called summation and connectivity 
properties [reviewed in Fell (1992)]. Important for an 
understanding of how control and regulation fit 
together, is that, when combined, these properties 
allow the expression of control coefficients in terms 
of elasticity coefficients. As an example, the J and 2- 
control coefficients of the two enzymes in Fig. IA can 
be expressed as 

c J,_ ~F c ~ -  -~:-m-' ~F - ~ "  ~ - ~P' 

C~ - 1 C~ - - 1 (8) 
~? - ~," ~7 - ~' 

These equations also illustrate the summation proper- 
ties (Kacser and Bums, 1973; Chen and Westerhoff, 
1986): the control coefficients of all steps with respect 
to a flux sum to one (i.e., flux-control is shared between 
the steps in a system); the control coefficients of all 
steps with respect to a particular concentration sum to 
zero (i.e., whereas some steps increase a metabolite 
concentration, others must decrease it). 

We can now begin to appreciate that although 
control and regulation are distinct concepts, they are 
inextricably interwoven in any understanding of meta- 
bolic behavior. Control can be expressed in terms of 
elasticity; regulation forms part of elasticity. 

Up to now arguments have been couched in terms 
of relative changes (0In y = ay/y), but is there any 
logical reason for preferring relative changes to abso- 
lute changes? The usual answer is that whereas the 
value of an absolute change depends on the dimensions 
used, a relative change is dimensionless (Kacser and 
Bums, 1973). True enough, but why not use a standard 
state to get rid of dimensions, instead of the prevailing 
state, which varies? Let us attempt to find a more 
satisfying answer by looking at a specific example: 
how a change in the enzyme concentration of reaction 

2 affects the steady-state behavior of the system 
described in Fig. 2. 

Figure 4A depicts two steady states: one at e2 = 
2 and one at e2 = 10. The dotted curves around these 
two v2-characteristics were calculated after increasing 
and decreasing the two e2-values by 1 (i.e., equal abso- 
lute changes). The boxes show the magnitudes of the 
concomitant changes in J and .~. The problem with 
using absolute changes is apparent in Fig. 4A. The 
obvious difference in the size of the boxes is possibly 
a reflection of the relative insensitivity of the steady 
state at e2 = 10 to changes in e2, but in part it must 
also be a reflection of the fact that increasing e2 = 10 
to 11 represents a l . l-fold change, while increasing 
e2 = 2 to 3 represents a 1.5-fold change. These two 
changes, although equal in absolute value, cannot be 
regarded as having the "same" effect on the enzyme 
concentration. Only when the same fold-change in e2 
is considered at both steady states (Fig. 4B), can one 
be sure that the effects on the steady state are not 
partly due to a difference in scale. Figure 4B shows 
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Fig. 4. Rate characteristics of the reactions in Fig. IA with respect 
to the ]inking metabolite X (A, B, and C) and parameter portraits 
of steady-state variables with respect to variation in e 2 (C and D). 
(A, B) Unscaled rate characteristics; (C) log-log form of the rate 
characteristics. The rate equation and parameters for v~ and v2 are 
the same as that in Fig. 2; v2 was calculated at e2 = 2 and e,_ = 
10 (solid lines). In (A) the dotted lines were calculated for a decrease 
and increase of 1.0 in the two e2-values. In (B) and (C) the dotted 
lines were calculated for a 1.4-fold decrease and increase of the 
two e2-values. (D) A portrait of the steady-state response in J and 
~" when parameter e2 is varied continuously, as calculated with the 
metabolic simulation program MetaModel (Cornish-Bowden and 
Hofmeyr, 1991). (E) Log-log form of the parameter portrait in (D). 
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that a 1.4-fold change around e2 = 10 has a greater 
effect on the flux and a smaller effect on X than a 
1.4-fold change around e2 = 2. However, the above 
argument that the context in which any change is 
observed must be taken into account holds equally for 
these changes in J and.~. This point is made by Cornish- 
Bowden (1981) in relation to the need for considering 
pH changes instead of changes in the hydrogen-ion 
concentration: "For example, in the mammalian stom- 
ach at a hydrogen-ion concentration of 10 -3 mol liter- 
an increase of 10 -5 tool liter -~ would be virtually 
imperceptible and would be expected to have only 
slight consequences; on the other hand, the same 
increase in a cell at a hydrogen-ion concentration of 
10 -7 mol liter -~ might well be devastating." Here the 
comparison is between 1.01-fold and 100-fold 
changes, whereas if equal pH changes had been consid- 
ered the fold-changes would have been equal. The 
crucial point is that in most circumstances we want 
to compare changes in state, rather than the states 
themselves, and a particular change can have very 
different effects in different contexts. Scaling the 
changes to a standard state does not get rid of this 
problem; standard states do not eliminate units, they 
just sweep them under the carpet. 

The more appropriate representation of the rate 
characteristics is therefore in log-log space (Fig. 4C); 
the dotted curves were calculated for a 1.4-fold 
decrease and increase in each of the two concentrations 
of E2 (i.e., equal relative changes). From this graph it 
is clear that the flux is more sensitive to changes in 
e2 at 2 than at 10; just the opposite holds for .~, which 
is less sensitive at the lower e2 (note that consideration 
of Fig. 4B led to the opposite conclusion). As before, 
the slopes of the log-rate characteristics at the two 
steady states are equal to the elasticities or the two 
rates with respect to x. 

A complete picture of the steady-state response 
to changes in e2 is given in a parameter portrait (Fig. 
4D). For the same reasons as above, the log-log repre- 
sentation of this graph (Fig. 4E) is the one to consider. 
The fact that e2 is now varied continuously does not 
change the argument; we are still comparing different 
steady states, albeit series that lie next to each other. 
At any point, the slope of the curve gives the control 
coefficient. For values of e2 up to about 2, reaction 2 
has a flux-control coefficient of I; at higher e2 the 
flux control of reaction 2 decreases (the summation 
property of flux-control coefficients requires that here 
C~ starts to increase from 0). 

With regard to ~, the difference between the 
unscaled and the scaled curves is more striking than 
with regard to the flux. If one assumes the definition 
of homeostasis given by Reich and Sel'kov (1981): 
"Homeostasis means that the change in level of a sta- 
tionary metabolite is very low after parameter perturba- 
tion," one would not deduce from Fig. 4D that .~ is 
homeostatically maintained, except perhaps at high 
values of e2. However, the above argument compels 
us to consider relative rather than absolute changes. 
From Fig. 4E it is clear that the relative change in .~ 
is small at low e2, while at higher e2 the relative change 
in ~ becomes inversely proportional to the relative 
change in e2 (C[ = - 1). If a definition of homeostasis 
in terms of small relative change is accepted, then it 
is clear that ~ is homeostatically maintained at low e2. 
However, at low e2 reaction 1 is near equilibrium, so 
that the observed homeostasis in ~ is thermodynamic 
rather than kinetic (the elasticity is dominated by mass- 
action), with the concomitant disadvantage that near- 
equilibrium concentrations can be disastrously high 
for reactions or reaction blocks with large equilibrium 
constants. One of the major regulatory strategies is to 
maintain kinetic homeostasis in key metabolites that 
are far from equilibrium. In the next section we shall 
discuss the role of signals in this context, but here 
we note that stoichiometric structures such as moiety- 
conserved cycles show built-in kinetic homeostasis 
without signals [see Reich and Sel'kov (1981) for a 
detailed discussion of this phenomenon]. 

KINETIC METABOLIC SIGNALS AUGMENT 
OR COUNTERACT MASS-ACTION 

Metabolic signals influence the rate of a reaction 
by modifying either the enzyme concentration (adap- 
tive signals) or the kinetic properties of existing 
enzyme molecules (kinetic signals) (Reich and Sel'- 
kov, 1981). The subject of metabolic signals is a vast 
one, and the reader is referred to Reich and Sel'kov 
(1981) for a detailed discussion. The aim here is to 
show how kinetic signals augment or counteract mass- 
action through elasticity. We shall again use rate char- 
acteristics for explanatory purposes. 

Signals are mediated by metabolites that influence 
reaction rate by binding to the enzyme. Such metabo- 
lites can be substrates, products, or effectors. For sub- 
strates and products the difference between reaction 
partner influence and signal influence is not always 
clear and depends on the catalytic mechanism; 
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effectors have only signal influence. Neve, theless, for 
many mechanisms, the expression for elasticity demar- 
cates clearly between mass-action, reaction partner 
influence, and signal influence. The Monod-Wyman- 
Changeux (MWC) model for cooperative and allosteric 
interactions (Monod et al., 1965) illustrates this. For 
an MWC-enzyme catalyzing the irreversible reaction 
S --* X that is allosterically activated by A and inhibited 
by I, the rate equation can be written in the following 
form (Popova and Sel'kov, 1975), assuming that the 
substrate does not bind to the T-form of the enzyme: 

1 1 
v =  V.cr 

1 + o "  l + q '  

(1 + L)" 
where q = Lo (9) 

(I + cr)"(l + a)" 

Lo is the equilibrium constant for the R0 ~ To transition 
in the absence of ligands, n the number of subunits, 
cr = s/Ke, L = i/K1, and ct = a ] K  a .  Ke, Kt, and Ka are 
the intrinsic dissociation constants for single subunit 
complexes with substrate, inhibitor, and activator 
respectively. 

The elasticity coefficients with respect to S, I, 
and A can be obtained from Eq. (9) as before: 

cr no" q 
r  - - + - -  

l + c r  1 + o -  l + q '  

- m  q 

l + t  l + q '  

e~ = __n~ q (10) 
l + o t  l + q  

In the expression for e.~ the first term of 1 quantifies 
the mass-action contribution, while the other terms 
are regulatory: the second term describes single-site 
substrate binding in the absence of signals (reaction 
partner influence), the third term the effect of coopera- 
tive binding (signal influence). Figure 5A shows how, 
in the absence of inhibitor or activator, the elasticity 
with respect to substrate varies with cr and how the 
mass-action, reaction partner, and signal terms contrib- 
ute to the elasticity. When ~r ,~ 1, the elasticity 
approaches a value of 1 (pure mass-action); when cr 
>> 1, the elasticity approaches zero (saturation). Figure 
5B shows that the elasticity approaches a value of n 
(here equal to 4) with increasing L0. 

The expressions for ey and ~ contain only signal 
terms, i.e., their mass-action contributions are zero 
because they are not reactants. These elasticities also 
depend, through q, on the prevailing value of ci (this 

3 " :1 

- 1  0 
0 .5 I0 15 20 0 5 I0 1,5 20 O" O" 

Fig. 5. The elasticity coefficient e~ of an enzyme with a Monod- 
Wyman--Changeux mechanism. (A) The value of e~ and the contri- 
bution of the various terms (curves a, b, and c show mass-action, 
reaction partner influence, and signal influence) were calculated 
from Eq. (10) for parameter settings: Kt = Ka = 0% n = 4,  I. o = 

10 4. (B) The value of e~ was calculated with the same parameter 
settings as in (A) with Lo-values given on the graph. 

will not be explored here). More general MWC rate 
expressions for reversible reactions with more than 
one substrate and product have been described by 
Popova and Sel'kov (1978), and can be used to obtain 
elasticity expressions. 

Kinetic signals can be classified in different ways 
(Reich and Sel'kov, 1981). Appropriate descriptive 
categories are intensity, action scale, and t ime scale. 
The maximum absolute value of the elasticity with 
respect to signal concentration measures the intensity, 
while the half-effect concentration x0.s measures the 
action scale. Kinetic signals can also be be classified 
according to their influence on steady-state stability, 
being either stabilizing or destabilizing (Tyson, 1975). 
As Reich and Sel'kov (1981) have shown, such a 
classification has pitfalls, as a signal that may normally 
be destabilizing can become stabilizing, and vice versa, 
when stoichiometric autocatalysis occurs in the system. 
In simple networks, stabilizing signals augment mass- 
action, while destabilizing signals counteract mass- 
action. Lastly, a kinetic signal can be homeostat ic  when 
it promotes (relative) constancy of its own concentra- 
tion in the face of parameter perturbations [negative 
feedback and positive feedforward signals are of this 
type, although some long-armed signals can produce 
oscillations (Higgins, 1967)], or product ive  when it can 
produce multiple steady states with potential trigger 
behavior, or oscillatory behavior (certain ranges of 
positive feedback and negative feedforward signals). 

We shall consider an example of a homeostatic 
signal (Fig. 6) to show how the flux and the steady- 
state concentration ~ of the system in Fig. 1A change 
in response to changes in demand for the signalling 
metabolite (reaction 2). We consider the introduction 
of (i) a cooperative product inhibition signal affecting 
the supply step (reaction 1), and (ii) a cooperative 
substrate activation signal affecting the demand step. 
To keep matters simple, both supply and demand reac- 
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Fig. 6. Rate characteristics of the reactions in Fig. 1A with respect 
to the linking metabolite X. (A, C) Unscaled rate characteristics; 
(B, D) log-log form of the rate characteristics. Curve a was calcu- 
lated from vl = 20/(I + 1 + 2x); curve b from vl = 20/(1 + 1 
+ 2XA). In (A) and (B) the rate equation for reaction 2 was v2 = 
10x/(l + x), while in (C) and (D) it was v2 = 10x4/(I + x4). The 
dotted lines are for a 1.4-fold increase and decrease in V2. The 
indicated magnitudes of 8(vt - v2) are for I~xl = 0.2. 

tions are far from equilibrium, so that the mass-action 
contributions of x in the elasticities e.~ and ex ~ are 
respectively 0 and 1; product inhibition effects, what- 
ever the Hill coefficient, are therefore solely regulatory. 

Two effects become clear when curve a (noncoop- 
erative product inhibition by x with Hill coefficient 
of 1) is compared with curve b (cooperative product 
inhibition by x with Hill coefficient of 4). 

First,  the boxed responses in Fig. 6B show that 
increasing steepness in the feedback signal transfers 
the response to a change in demand from the concentra- 
tion scale to the flux scale, i.e., flux-control by demand 
is increased (at the expense of flux-control by supply), 
while ~-control by demand is decreased (the response 
in ~ becomes more homeostatic). In terms of control 
coefficients, C~ increases from 0.5 to 0.8, while C~ 
changes from - 1  to -0 .4 ,  i.e., its absolute value 
decreases. When substrate cooperativity is introduced 
into the demand step (Fig. 6D), less flux-control resides 
in the demand step, as C~-values are lower than in the 
corresponding cases with no demand cooperativity. 
Nevertheless, increasing the strength of feedback on 
the supply still increases flux control (C~ increases 
from 0.2 to 0.5). Introduction of cooperativity into the 
demand also decreases ~-control by demand, while 
retaining the reduction caused by increasing the feed- 
back on supply (C[ goes from - 0 . 4  to -0.25).  Here 
it is imperative to compare Figs. 6B and D, not A and 
C, as we have defined control and homeostasis in 
relative, not absolute, terms. It must be stressed that, 
because reaction I is unidirectional, the type of homeo- 

stasis we are discussing here is kinet ic  homeostasis, 
not thermodynamic homeostasis. 

Second,  in Fig. 6A, increasing steepness of the 
feedback signal stabilizes the steady state by making 
the eigenvalue O(vl - v2)lOx more negative (inciden- 
tally, this function is equal to the difference in the 
unscaled elasticity coefficients: Ovl/Ox - Ov210x = 
~.~t - ~2). This effect on dynamic stability is amplified 
when substrate cooperativity is introduced into the 
demand step 2 (Fig. 6C). Dynamic stability is a matter 
of absolute changes in the sense that it depends on the 
eigenvalues of the system, and the eigenvalues are 
composed of unscaled elasticity coefficients. On the 
other hand, as argued above, structural stability 
(homeostasis) is a matter of relative changes. Never- 
theless, this analysis confirms the point made by Reich 
and Sel'kov (1981) that homeostasis with respect to 
changes in demand for signal, and dynamic stability 
with respect to perturbations in signal concentration, 
are two sides of the same coin. 

The central message of this analysis is again that 
scaled and unscaled elasticity is the key to regulation. 
Although, for the sake of simplicity, a very simple 
system has been used as an example, the analysis 
can be extended to systems of arbitrary complexity, 
especially if the powerful matrix formulation of control 
analysis [see references in Hofmeyr et  al. (1993)] is 
brought into play. In the next section the above analysis 
of feedback signals is extended to a more typical sys- 
tem, namely that of allosteric end-product inhibition 
in biosynthesis. 

CO-RESPONSE COEFFICIENTS MEASURE 
ELASTICITIES  OF REACTI ON B L O C K S  

Figure 7A shows a typical biosynthetic structure 
where the so-called "end-product" of biosynthesis X3 
is consumed by a demand step (or steps). For example, 
X3 could be an amino acid, in which case P could be 
protein. Many systems of this type are equipped with 

Fig. 7. A linear pathway with a feedback loop caused by X3- 
inhibition of El. In (B) the first three enzymes are grouped to form 
the biosynthetic supply block for X3, while E4 is the demand for X3. 
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a long-armed inhibitory feedback signal from X 3 to 
the committing step of the biosynthetic sequence 
(Stadtman, 1970). If the biosynthetic sequence is 
regarded as a supply block for X3, the system simplifies 
to that in Fig. 7B. 

The analogy between the systems in Fig. 1A and 
Fig. 7B is clear, but, in general, analytical expressions 
for the rates of the supply and demand blocks as func- 
tions of X3 are not available, so that the powerful 
explanatory properties of rate characteristics seem to 
be unavailable (although numerical steady-state simu- 
lation can supply the rate characteristics if appropriate 
rate equations for the individual enzyme reactions are 
available--see Hofmeyr and Comish-Bowden (1991) 
for a numerical analysis of the system in Fig. 7A). 

It is in such situations that metabolic control anal- 
ysis comes to the rescue, especially the recently-devel- 
oped concept of co-response coefficient (Hofmeyr et  
al., 1993) and the top-down approach to control analy- 
sis (Brown e t  al., 1990; Brown, 1993). Imagine that 
the system is in steady state, and that we are interested 
in the behavior around that steady state, i.e., we want 
to construct the area around the point where the rate 
characteristics of the supply and demand block inter- 
sect. For this we need to vary the activity of the demand 
step around its prevailing value, while keeping the 
supply block parameters unchanged [this can be done 
by varying enzyme concentration, specific inhibitors, 
etc.--see Fell (1992) for a review of experimental 
strategies in control analysis]. At each demand activity 
the new steady-state must be established and the value 
of J and 23 measured. The same procedure is repeated 
for varying supply at constant demand. The two sets 
of (J, 23)-values are then plotted on a log-log scale to 
yield partial rate characteristics around the steady-state 
intersection (similar to Fig. 2B). The slopes of the two 
curves at the steady-state point equal the elasticities 
of the supply and demand blocks with respect to x3. 
If the equilibrium constants of the supply and demand 
blocks are known, the mass-action contribution to the 
supply and demand elasticities can be calculated, and, 
therefore, how much regulation there is. 

It has recently been shown that for systems where 
a metabolite clearly separates two blocks, the block 
elasticities with respect to the separating metabolite 
are equivalent to co-response coefficients, which relate 
the concomitant change in two independent steady- 
state variables in response to a perturbation (Hofmeyr 
et  al., 1993; Cornish-Bowden and Hofmeyr, 1994). 
For example, the (J, x3) co-response with respect to a 
perturbation in v4 is defined as 

,, j a l n J _ R . . , _  C~ 
- ( I I )  

Here it is assumed that parameter p only affects v4, so 
that it cancels from the R-ratio to give the C-ratio. 

In our system ~su3Pply = 40~x 3 a n d  E.d~ mond = 10~x 3 

= 20~ 3 = 30~x 3. To assess the effectiveness of feedback 
by x3 we must obtain 40~x 3 by varying the activity of 
E4. We can also use the formalism of metabolic control 
analysis to obtain an expression for 40~x 3 in terms of 
individual elasticity coefficients (Hofmeyr and Cor- 
nish-Bowden, 1991): 

__ Vl v2~:v3 __ v2 v3 Vl 
lEx I Ex2~x3 Ex 1 ~'x2~x3 

4 0  J3 = ( 1 2 )  
__ v2 v3 Vl v3 Vl v2 

EXlEX2 -~- ~-Xl Ex2 ~-x i Ex2 

If, as is often the case in biosynthetic systems, the 
first reaction is unidirectional and insensitive to its 
immediate product (ey, l = 0), the expression in Eq. 

%' I �9 (12) simplifies to 40~3 e~ppty = ex3. Thts means that 
the supply elasticity depends only on the regulatory 
effect of x3 on vl; if a rate-equation for vl is available, 
the supply elasticity can be calculated analytically. 

This is just one example of the use of co-response 
coefficients. They can also form the basis of a control 
and elasticity analysis (Hofmeyr et  al., 1993). A fuller 
treatment to be published elsewhere will show that the 
principles illustrated by the simple example in this 
review are quite general. David Fell (personal commu- 
nication) has kindly pointed out a useful link between 
the type of analysis of Figs. 4B, 6B, and 6D and co- 
response analysis. The absolute value of co-response 
coefficient 20~x specifies the aspect ratio of the response 
box, i.e., vertical side/horizontal side, while its sign 
specifies whether the two variables change in the same 
(+)  or opposite ( - )  direction. Strictly speaking this 
is of course true only for small parameter changes. 
The actual size of the box depends on the values of 
the control coefficients. For example, in Fig. 6B an 
increase in the steepness of feedback inhibition 
changes 20~x from 0.5/( -  1.0) = -0 .5  to 0.8/(-0.4) -- 
- 2 ,  while in the presence of substrate cooperativity 
in the demand step (Fig. 6D) it changes 20~x from 0.2/ 
( -0 .4)  = -0 .5  to 0.5/(-0.25) = -2 .  So, the box 
sizes differ although the values of the aspect ratios, and 
the way they change when the steepness of feedback is 
increased, are the same in the presence or absence of 
substrate cooperativity. 

Nevertheless, although a co-response analysis can 
be of great help in obtaining insight into regulation, 
it must be stressed that it is of much less use for 
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studying system stability. Simplifying the system by 
grouping reactions together is of little use for assessing 
dynamic stability. Only under very special conditions 
is the function ~(vs,ppty - Vaem~,a)/OX3 (which is the 
difference between two unscaled co-response coeffi- 
cients) an eigenvalue of the system. 

CONCLUSION 

This control analytic perspective of metabolic 
regulation has outlined a possible basis for a quantita- 
tive theory of regulation. In the context of a definition 
of regulation as a battle with mass-action, I have 
attempted to show the advantages of elasticity, control, 
and co-response analysis, the use of rate characteristics 
as an explanatory tool, and the need for care in the 
choice of relative or absolute changes when consider- 
ing questions of metabolic regulation. 

eln s eln x~ 
I n v = l n ~ - l n  1 + Ks + Kx] (A4) 

eln x 

Partial differentiation with respect to In s and In x 
gives Eqs. (3) and (4) in the main text. 
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APPENDIX: OBTAINING ELASTICITY 
EXPRESSIONS 

Consider the general rate equation [Eq. (1)]. A 
simple way of obtaining analytical expressions for 
elasticity coefficients is to write the rate equation in 
logarithmic form as a function of logarithmic concen- 
trations using the equality y = e ~n y" 

l n v = l n k + l n O  + I n  e l " s -  (A1) 
Keq 

and then partially differentiate with respect to the loga- 
rithm of a substrate or product. The elasticity coeffi- 
cients with respect to substrate S and product X would 
be expressed by 

0 In v 0 In O 1 
~ . . . .  + (A2) 

0 In s 0 In s 1 -- F/Keq 

0 In v 0 In O F/Keq 
~ - 0 In x 0 In x 1 - -  F/Keq (A3) 

The form of the saturation terms depends on the kinetic 
mechanism; the form of the thermodynamic terms is 
fixed: for substrates as in Eq. (A2) and for products 
as in Eq. (A3). 

For example, writing Eq. (2) in logarithmic 
form gives 
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